
Plasma Physics and Controlled Fusion

ACCEPTED MANUSCRIPT

Self-consistent simulation of resistive kink instabilities with runaway
electrons
To cite this article before publication: Chang Liu et al 2021 Plasma Phys. Control. Fusion in press https://doi.org/10.1088/1361-6587/ac2af8

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2021 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 128.112.200.107 on 30/09/2021 at 18:52

https://doi.org/10.1088/1361-6587/ac2af8
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6587/ac2af8


Self-consistent simulation of resistive kink
instabilities with runaway electrons

Chang Liu
Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America

E-mail: cliu@pppl.gov

Chen Zhao
Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America

Stephen C. Jardin
Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America

Nathaniel M. Ferraro
Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America

Carlos Paz-Soldan
Columbia University, New York, NY, United States of America

Yueqiang Liu
General Atomics, San Diego, CA, United States of America

Brendan C. Lyons
General Atomics, San Diego, CA, United States of America

Abstract.
A new fluid model for runaway electron simulation based on fluid description

is introduced and implemented in the magnetohydrodynamics code M3D-C1, which
includes self-consistent interactions between plasma and runaway electrons. The model
utilizes the method of characteristics to solve the continuity equation for the runaway
electron density with large convection speed, and uses a modified Boris algorithm for
pseudo particle pushing. The model was employed to simulate magnetohydrodynamics
instabilities happening in a runaway electron final loss event in the DIII-D tokamak.
Nonlinear simulation reveals that a large fraction of runaway electrons get lost to
the wall when kink instabilities are excited and form stochastic field lines in the
outer region of the plasma. Plasma current converts from runaway electron current
to Ohmic current. Given the agreements with experiment on runaway electron loss
ratio and mode growing time, the simulation model provides a reliable tool to study
macroscopic plasma instabilities in existence of runaway electron current, and can be
used to support future studies of runaway electron mitigation strategies in ITER.

Page 1 of 26 AUTHOR SUBMITTED MANUSCRIPT - PPCF-103428.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Self-consistent simulation of resistive kink instabilities with runaway electrons 2

Submitted to: Plasma Phys. Control. Fusion

Page 2 of 26AUTHOR SUBMITTED MANUSCRIPT - PPCF-103428.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Self-consistent simulation of resistive kink instabilities with runaway electrons 3

1. Introduction

Severe damage can be caused by high-energy runaway electrons (REs) generated in
tokamak disruption events, which is one of the major threats to the safe operation of
ITER [1]. It is predicted that large populations of RE can be generated during the
current quench phase through knock-on collisions and the resulting RE avalanche [2, 3].
The current associated with RE can be several mega-amperas (MAs). It can alter
the macroscopic magnetohydrodynamics (MHD) stability conditions and thus plays an
important role in the disruption process. Several present-day tokamaks, including DIII-
D [4], JET [5], ASDEX [6], and J-TEXT [7] have been used to test RE avoidance and
mitigation strategies in order to control this issue in ITER and future fusion reactors.

In recent experiments on DIII-D [8] and JET [9] with large RE current generation,
significant MHD instabilities are observed in the RE current plateau phase after the
initial disruption, which leads to the loss of most RE within tens of microseconds .
These experiments indicate the importance of MHD instabilities in a successful RE
mitigation. In the experiments, high-Z impurities are expelled via deuterium injection,
which also lowers the plasma density [10]. The interaction between MHD instabilities
and RE current has been studied before theoretically with both analytical theory and
numerical simulations[11, 12, 13, 14, 15]. In the simulation, a fluid description of RE is
used to simplify the calculation, in which RE current is calculated from RE density, and
the feedback of RE current to MHD is included in the generalized Ohm’s law of MHD
equations. However, since RE have a convection speed much larger than the Alfvén
velocity, solving the continuity equation for the RE density is challenging, and can lead
to numerical instabilities. To overcome this issue, a reduced value of the convection
speed is often used, and artificial diffusion of RE density is introduced to damp high-k
modes.

In this paper, we present a new model for coupling RE in MHD simulations, and
discuss its implementation in M3D-C1. This model is based on the fluid description
of REs [14]. The convection part of the RE continuity equation is treated using
the method of characteristics, which can help avoid numerical instabilities associated
with the Courant–Friedrichs–Lewy (CFL) condition. The solution of the characteristic
equation can be obtained by following pseudo particles along characteristic lines, which
is similar to particle-pushing in a particle-in-cell (PIC) simulation and can be easily
accelerated using parallel computing and GPUs. In addition, we utilized a modified
Boris algorithm to advance pseudo particles. The Boris algorithm[16] can be used to
advance changed particles in magnetic fields, including their slow manifolds[17], which
can conserved phase space volume[18] and help limit the accumulation of numerical
error. This new simulation model enables us to efficiently calculate the RE continuity
equation with a large value of the convection speed, comparable to the speed of light.

Using this model we simulate a resistive kink instability happening in the RE
plateau. The simulation is based on a DIII-D shot 177040, in which a large RE current
is generated from the avalanche after the initial disruption, and finally leads to a “second
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Self-consistent simulation of resistive kink instabilities with runaway electrons 4

disruption” when the edge safety factor (qa) approaches 2, and causes the sudden loss of
all RE [8]. The linear simulation shows the dominance of the (2,1) kink mode near the
edge, in agreement with previous work using MARS-F [19]. In the nonlinear simulation,
it is found that as the (2,1) resistive kink mode grows exponentially, more than 95% of
the REs can get lost to the wall due to the breaking of flux surfaces and formation of
stochastic field lines, which is in agreement with the experimental observation[8]. The
plasma current is converted from RE current to Ohmic current, and its Ohmic heating
effect results in an increase of plasma temperature, which is self-consistently modeled
in the simulation. After the initial strike of MHD instability, the outer region of the
plasma remains stochastic, and the current density near the magnetic axis increases
which drives a (1,1) kink mode and flattens the residual RE density in the core region.

This paper is organized as follows. In Sec. 2 we introduce the fluid model of REs that
was implemented in M3D-C1. In Sec. 3 we discuss the motivation and implementation
of the method of characteristics for solving the RE convection equation. In Sec. 4 we
discuss the modified Boris algorithm used in pseudo particle pushing, and illustrate its
conservation property. In Sec. 5 we discuss the simulation of a resistive kink instability
with REs happening in a DIII-D equilibrium, including the linear growth rate and real
frequency, and nonlinear saturation and RE loss. In Sec. 6 we give the conclusions and
discussion.

2. Fluid model of RE in MHD

M3D-C1 is an initial value code that solves the 3D MHD equations in tokamak geometry
[20]. The code utilizes high-order C1 continuous finite elements on a 3D mesh which is
unstructured in (R,Z) but extruded in the toroidal angle. It has the options to evolve
the equations using fully-implicit or semi-implicit methods [21]. The sparse matrices
generated from the Galerkin method are typically solved using the generalized mininal
residual method (GMRES) method with a block-Jacobi preconditioner. In addition
to the plasma region, the code can also contain a resistive wall region and a vacuum
region, and can represent halo currents shared by the plasma and wall regions [22].
In combination with a kinetic code, M3D-C1 can also be used to study effects such
as neoclassical tearing modes [23] and excitation of Alfvén modes driven by energetic
particles[24].

M3D-C1 has been used to study several phenomena related to tokamak disruptions,
such as vertical displacement event (VDE) [25], generation of halo current [26], and
thermal quench due to impurities injection [27]. Given the importance of REs in
disruption studies, we have implemented a fluid model of REs in M3D-C1, by adding a
new equation describing the evolution of RE density [14]. The RE current is calculated
using RE density based on a simplified model of RE momentum distribution. The whole
set of MHD equations solved by M3D-C1 can be written as,

nm

[
∂V

∂t
+ (V · ∇)V

]
= enREE+ (J− JRE)×B−∇p, (1)
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Self-consistent simulation of resistive kink instabilities with runaway electrons 5

∂n

∂t
+∇ · (nV) = 0, (2)

∂nRE

∂t
+∇ ·

[
nRE

(
cREb+

E×B

B2

)]
= SRE, (3)

JRE = −enRE

(
cb+

E×B

B2

)
, (4)

E = −V ×B+ η (J− JRE) , (5)
∂B

∂t
= −∇× E, ∇×B = J, (6)

p = n(Te + Ti), (7)
n

(γ − 1)

[
∂ (Te + Ti)

∂t
+∇ · ((Te + Ti)V)

]
= −n (Te + Ti)∇·V−∇·q+η(J−JRE)

2, (8)

q = n
(
κ⊥∇+ bκ‖∇‖

)
· (Te + Ti) . (9)

In this set, Eq. (1) is the MHD momentum equation. n is the plasma number density, m
is the ion mass, V is MHD velocity, E is the electric field, e is the elementary charge, J
is the total current, B is the magnetic field, and p is the plasma pressure. The first term
on the right-hand-side is due to the positive charge of plasma if excluding RE. Eq. (2)
is the continuity equation of plasma density. Eq. (3) is the continuity equation for RE
density nRE, where b = B/B, cRE is the RE convection velocity, and SRE is a source
term representing RE generation. RE current JRE is calculated from nRE in Eq. (4),
where c is the speed of light. Eq. (5) is the generalized Ohm’s law where η is the plasma
resistivity. Eq. (6) is the Faraday’s law, which is used to advance the vector potential
A so that B = ∇ ×A remains divergence free. The pressure p is calculated from the
electron temperature Te and ion temperature Ti. Here we use a unified temperature
for both assuming Te = Ti. Eq. (8) is the temperature equation where γ is the ratio
of specific heats and q is the heat flux. The last term characterizes Ohmic heating. q

can be calculated with Eq. (9), where κ‖ and κ⊥ are parallel and perpendicular heat
conduction coefficients.

Eq. (3) describes streaming of REs along magnetic field lines with parallel velocity
cRE and E × B drift included. Given that most of the REs are relativistic particles
with a very small pitch angle, the value of cRE should be close to the speed of light c,
but is usually set to be a smaller value for numerical efficacy. The E ×B drift can be
important when MHD instabilities become significant. Note that here the gradient and
curvature drifts of REs are not included, assuming that the average energy of REs is
small thus these drift motions are subdominant compared to parallel streaming, and the
perturbed magnetic field δB is much smaller compared to the equilibrium field.

The current formed by REs can be represented as Eq. (4). When substituting
this JRE into Eq. (1), it is found that the component perpendicular to B can cancel the
−JRE×B term, and only the parallel component is left. This component is not included
in the current implementation, given that runaway density is much smaller compared
to that of thermal electrons and E parallel to B is smaller than perpendicular part.
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Self-consistent simulation of resistive kink instabilities with runaway electrons 6

Since the collisional friction of REs can be ignored compared to thermal electrons, the
resistive term in the generalized Ohm’s law is reduced as in Eq. (5).

In the split time advance scheme in M3D-C1, the MHD equations are calculated
following the orders in Eq. (1-9) for every MHD timestep. For each equation the time-
integration quantity is solved using θ-implicit method. The momentum equation is
advanced using the semi-implicit method, by including a parabolic term that was derived
from second order time derivatives, to ensure numerical stability [28, 21]. The plasma
and RE densities are then calculated using the magnetic field and electric field from the
previous timestep. The magnetic field equation and the pressure equation are advanced
at the last step, using the velocities and RE density obtained from both the current and
previous timesteps.

3. Method of characteristics for solving RE convection

As discussed in the Sec. 2, the continuity equation of RE density (Eq. (3)) needs to be
solved for the fluid RE model. In the previous implementation used for linear MHD
simulation in a 2D mesh including RE current [14], this equation was solved using the
same numerical method as other MHD equations. First a sparse matrix is constructed
by way of the θ-implicit method and the Galerkin method. Then this matrix is solved
using a direct solver.

However, it becomes more challenging to solve the RE continuity equation in a
3D mesh for nonlinear simulation with cRE � vA, where vA is the Alfvén velocity.
In 3D, a direct solver is no longer feasible, and the GMRES iterative method is used
with a block-Jacobi preconditioner. This preconditioner is not optimal for Eq. (3)
because the second term is dominated by the toroidal derivative of the RE density
(∂ϕnRE, where ϕ is the toroidal angle) as b is mainly along the toroidal direction. In
the linear simulation where the toroidal derivative can be represented using a Fourier
mode number, this term is a diagonal term in the matrix. In nonlinear simulation using
3D mesh, this term becomes an off-diagonal term with block-Jacobi method and can
dominate the matrix when cRE � vA if the timestep is on the order of the Alfvén
time. To overcome the singularity and make the matrix solver converge, one can use a
smaller timestep and introduce subcycles when solving this continuity equation, which
will increase the computation time. Additionally one can use a smaller value of cRE

to reduce the singularity. This method was used in [12, 13] and in our previous linear
simulation [14], where we showed that the linear growth rate of MHD modes is not
sensitive to the value of cRE. However, it is found in our nonlinear simulation that
one needs a large enough value of cRE to get a converged result of mode saturation
amplitude, as discussed in Sec. 5.3.

Another issue in our previous implementation is numerical instability, which is
linked to the singularity problem and can become serious as cRE becomes large. This
is because Eq. (3) is a pure convection equation and high k modes caused by numerical
error will not diffuse. This issue can be overcome by introducing an artificial diffusion
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Self-consistent simulation of resistive kink instabilities with runaway electrons 7

term into Eq. (3), which was used in in previous work. However, when cRE is large, this
diffusion term also needs to be large to suppress the numerical instability, and this large
diffusion term can possibly reduce the MHD mode growth or even suppress unstable
modes.

In view of the above issues, we developed a new method to deal with RE convection,
by converting the convection part of Eq. (3) from a partial differential equation
(PDE) into an ordinary differential equation (ODE) and solve it using the method of
characteristics. Using some properties of magnetic fields, the convection part of Eq. (3),

∂nRE

∂t
+∇ ·

[
nRE

(
cREb+

E×B

B2

)]
= 0, (10)

can be rewritten in a divergence-free form,

∂

∂t

(nRE

B

)
+

(
cREb+

E×B

B2

)
· ∇
(nRE

B

)
=
nRE

B2
[E · (∇× b)] . (11)

The details of this conversion can be found in Appendix A. The last term characterizes
the change of nRE/B due to the horizontal displacement motion and resistive diffusion,
both of which happen on the resistive timescale that is much longer than the time for
RE convection along field lines. This term can be treated as an extra source term, and
the rest of the equation can be easily solved by following the characteristic line,

dx(t)

dt
= cREb+

E×B

B2
, (12)

which can help convert the PDE into an ODE,

d

dt

(nRE

B

)
[x(t), t] =

∂

∂t

(nRE

B

)
[x(t), t] +

dx(t)

dt
· ∇
(nRE

B

)
[x(t), t] = 0, (13)

whose solution is just (nRE/B) [x(t0), t0] = (nRE/B) [x(t = 0), 0]. Therefore, to solve
the convection equation, one needs to integrate along the characteristic line (Eq. (12))
backwards in time to obtain the value of (nRE/B) at x(t = 0), and then do a pull-back
transformation to obtain the new value of (nRE/B) from it.

When applying this method, we are using the new field quantity (nRE/B) instead
of nRE to represent RE density. In M3D-C1, all the field quantities are described as
coefficients of finite element basis functions. These coefficients can be calculated by
solving a linear algebra equation, if the value of the fields at each quadrature points is
known,∑

i

(νi, Ciui) =
∑
i

(
νi,

nRE

B

)
=
∑
i

∑
m

νi(x = xm)
nRE

B
(x = xm)J(x = xm), (14)

where νi is the i-th test function and ui is the basis function. Ci is the coefficient
corresponding to ui for the field (nRE/B). xm is the m-th quadrature point used for
integration. (·, ·) is the inner product and J is the Jacobian for spatial integration. The
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Self-consistent simulation of resistive kink instabilities with runaway electrons 8

equation on the left-hand-side can be written as M · C, where M is the mass matrix.
Therefore, to obtain the values of Ci of (nRE/B), one needs to calculate its value at each
quadrature point at the end of the timestep. The calculation steps using the method of
characteristics can be described as follows:

(i) Initialize “pseudo particles” at each quadrature point of every element in the whole
3D mesh.

(ii) Push all the particle following Eq. (12), for a period of ∆t but backwards in time.
(iii) Pull the value of nRE/B at the final position to the initial quadrature point.
(iv) Solve the mass matrix equation Eq. (14) to obtain the coefficients Ci of nRE/B at

the new timestep.
(v) Calculate the value of RE source term and add it to the field.

This process is similar to advancing particles and calculating their density through
mesh deposition in a PIC simulation. The difference is that in this method RE density
is represented as a MHD field rather than a moment of the distribution function.
Therefore, there is no need to pump in new particles when RE are lost, and the numerical
noise due to the spikiness of the particle distribution is not present.

Since the RE continuity equation has been converted to an ODE, the choice of
timestep for for pseudo particle pushing is not limited by the CFL condition, and
numerical instability can be avoided even with large ∆t. This also means that the
artificial diffusion term which was introduced in the RE continuity equation in previous
work is not needed. Nevertheless, to ensure the accuracy of the RE orbit calculation
with large cRE, we choose a smaller timestep ∆t′ for Eq. (12) calculation than what is
used for the MHD calculation. This means that there are multiple subcycles of particle
pushing within each MHD timestep, during which the MHD fields are assumed to be
fixed. Note that the pushing of pseudo particles are independent of each other, thus can
be easily parallelized and accelerated using GPUs.

To illustrate the performance of the method of characteristics, we did a
benchmark for calculating Eq. (10) using both the θ-implicit method using block-
Jacobi preconditioner and the new method of characteristics on CPUs and GPUs, for
∆t = 0.65µs). This benchmark is conducted using the Summit cluster. The CPU
computation is done using 32 IBM POWER9 CPUs and the GPU computation is done
using 96 NVIDIA Volta V100s GPUs. In the benchmark we employ a mesh with 16
toroidal planes and 6454 elements per plane. The RE convection velocity is set as
cRE = 8vA, which is close to the value of speed of light. The total number of pseudo
particles is 1290800, which is equal to the quadrature points of all elements (125 per
element). Even with such large number of pseudo particles, the method of characteristics
still outperforms the classical method on computation time, as shown in Fig. 1. The
reason is that, to make the θ-implicit method work with such a large value of cRE, we
need to use a large number of subcycles to make the GMRES solver converge, which
slows down the solving of the continuity equation significantly. For the method of
characteristics, we apply ∆t′ = ∆t/160 for pseudo particle pushing, but the calculation
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Self-consistent simulation of resistive kink instabilities with runaway electrons 9

is still faster given the simplicity of particle pushing operation and the acceleration
brought by parallelization computing, especially on GPUs. This example shows that
for simulations with large cRE, the method of characteristics has a significant advantage
over the classical method.

θ-implicit
CPU

characteristic
CPU

characteristic
GPU

0

200

400

600

492

21 4.5

co
m

pu
ta

tio
n

tim
e

(s
)

Figure 1. Computation time for calculating RE convection equation for 16 toroidal
planes (6454 elements per plane), 1290800 pseudo particles and ∆t = 0.65µs with
cRE/vA = 8 using different methods and processors.

4. Modified Boris algorithm for pseudo particle trajectory calculation

When using the method of characteristics to solve the RE continuity equation, one needs
to integrate the trajectories of pseudo particles to update the value of the RE density.
It is known that classical integration methods for solving ODEs, such as the explicit
Runge-Kutta method, do not conserve physical quantities and suffer from accumulation
of numerical error for long time simulations. This problem is more serious for the
calculation of trajectories of RE with large convection velocity. Inaccuracies of numerical
integration can lead to the deviation of a pseudo particle trajectory from its original
flux surface even without perturbations, and can break the conservation of RE density.

This error accumulation problem can be mitigated by using sympletic or structure-
preserving integrators. Recently, a new algorithm using the idea of slow manifold for
calculating the orbits of charged particles in magnetic fields has been developed [17].
In this algorithm, the fast gyro motion of magnetized particles is ignored and only the
slow manifold of motion is calculated, which is similar to the guiding center model.
Structure-preserving algorithms such as the Boris algorithm can then be used to evolve
this slow manifold with a timestep not limited by the gyro period. In order to take
into account the effect gyro motion of the slow manifold, the mirror force (−µ∇B) is
introduced as an effective electric force on the particles. This method was shown to have
good long time conservation properties, and was recently implemented in a MHD-kinetic
hybrid code M3D-C1-K for particle pushing[24].
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Self-consistent simulation of resistive kink instabilities with runaway electrons 10

Inspired by this algorithm, we developed a modified Boris algorithm to advance
pseudo particles following Eq. (12), which is structure-preserving and can be used
for long time simulations. We start from the classical Boris algorithm, which can be
described by the following equations,

xl+1 = xl + vl+1/2∆t
′, (15)

v′
l+1/2 = vl+1/2 −

El+1 ×Bl+1

B2
, (16)

v†
l+3/2 = v′

l+1/2 +
q

m

(
v′
l+3/2 + v′

l+1/2

2
×Bl+1

)
∆t′, (17)

vl+3/2 = v†
l+3/2 +

El+1 ×Bl+1

B2
, (18)

where we subtract the E × B drift in Eq. (16) before doing the velocity rotation with
respect to B in Eq. (17), and add it back after the rotation in Eq. (18). Note that Eq. (12)
can be regarded as the equation of motion of massless particle in electromagnetic fields,
where particles are only affected by E×B drifts and not affected by gradient or curvature
drifts which depend on particle mass. In terms of that, we can take the limit of m→ 0

to obtain a modified Boris algorithm for integration of Eq. (12). In this limit, in order
to satisfy Eq. (17), the term in the parentheses must then vanish. Therefore Eq. (17)
should be replaced by(

v′
l+3/2 + v′

l+1/2

)
×Bl+1 = 0,

∣∣v′
l+3/2

∣∣ = ∣∣v′
l+1/2

∣∣ . (19)

The last equation is added because the magnetic field force does not change the kinetic
energy of particles. We can see that in this modified Boris algorithm, the magnetic
field is not used as a guidance for the next step motion like in Runge-Kutta method.
Instead, the next step velocity depends on the its value at the previous timestep and
the magnetic field works like a reflection mirror that only reverses the component of v
which is normal to it.

As discussed in [17], the Boris algorithm can be used to push particles with a
timestep larger than the gyroperiod, as long as it follows the slow manifold of particle
motion without gyromotion. When integrating Eq. (12), we are only interested in drift
motion including E×B drifts, so it is valid to apply the modified Boris algorithm with
∆t′ larger than the electron gyro period. To ensure that the trajectory stays in the slow
manifold, we use the 4th order Runge-Kutta (RK4) method to calculate the particle
motion of the initial timestep from x0 to x1 following Eq. (12), and then obtain v1/2

according to Eq. (15). These quantities are used as initial values of the modified Boris
algorithm.

To show the conservation property of the modified Boris algorithm, we did a test
simulation to compare the results of it and RK4 for advancing Eq. (12) with cRE = 32vA.
In this test, the RE current is advanced following Eq. (10) without electromagnetic
perturbations or RE source. A plasma equilibrium from DIII-D shot 177040 is used,
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Self-consistent simulation of resistive kink instabilities with runaway electrons 11

which is also used for the nonlinear simulation presented in Sec. 5. Given that J = JRE

and there is no resistivity associated with RE current, the total RE current should not
change with time. Fig. 2 (a) shows the evolution of the total RE current using the two
algorithms, where the change is due to the accumulation of numerical error. The error
of the modified Boris algorithm is much smaller compared to that of RK4. This result
shows that the modified Boris algorithm provides better conservation properties for the
RE density when calculating the RE continuity equation. Note that in this simulation
the timestep for pseudo particle pushing of the modified Boris algorithm is 1/4 of the
timestep of RK4, as in RK4 the field evaluation needs to be done 4 times in one timestep
of particle pushing. The total time for particle pushing using the two algorithms are
almost the same.

To better understand the underlying reason for the difference between the results,
we compare the conservation property of a single pseudo particle during the calculation.
Given that the system is axisymmetric without any perturbation, the toroidal angular
momentum Pϕ = mvϕR+ ψp should be conserved. Since pseudo particles are massless,
there is no kinetic momentum associated with it and the conserved quantity is just
ψp. Fig. 2 (b) shows the time evolution of ψp for a single pseudo particle during the
particle pushing, using two different algorithms. We can see that the total error of RK4
is larger for the period of integration. This error can lead to the start and end points
of pseudo particle lying on different flux surfaces, resulting in an artificial diffusion and
the breaking of RE density conservation. The numerical error of the modified Boris
algorithm, though larger at each timestep, does not accumulate with time like in RK4,
which is consistent with the structure-preserving property of the Boris algorithm [18].
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Figure 2. (a) Time series of total RE current in a static field simulation with
cRE/vA = 32 using method of characteristics. The blue lines shows the result using
RK4 for pseudo particle orbit calculation, and the red line shows the result using the
modified Boris algorithm. (b) Conservation of magnetic flux for one pseudo particle
using the two algorithms.
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Self-consistent simulation of resistive kink instabilities with runaway electrons 12

5. Numerical simulation of resistive kink mode with REs in DIII-D

In this section we show the simulation results using the RE module in M3D-C1 developed
for MHD instabilities happening in a high RE current equilibrium. This setup is based
on DIII-D shot 177040, where a large RE current is driven by external loop voltage in
the post-disruption phase. The RE current reaches about 1MA and the safety factor
of the last closed flux surface (LCFS) (qa) drops to close to 2. Deuterium massive gas
injection (MGI) helps purge the impurities injected earlier to trigger the disruption, and
reduces the plasma density. Note that MHD instabilities can happen both during the
RE current growing stage and the final loss stage when qa drops to 2. In the former
stage, the instabilities happen intermittently, and the loss of RE at the edge can be
quickly compensated by the continuous generation near the core. In the simulation, we
focus on the MHD instabilities happening in the final loss event, where the majority of
RE are lost in a short time without regeneration.

5.1. Plasma equilibrium

Due to the RE shape control system available at DIII-D, the formed RE beam and
the remaining closed flux surfaces are located near the high field side (HFS) in post-
disruption plasma. The profiles of RE density, the flux contours, and the finite element
mesh used for the simulation are shown in Fig. 3. Note that the mesh density is high in
the plasma region, especially near the q = 2 flux surface in order to resolve the tearing
layer structure.

The initial plasma equilibrium satisfying the Grad-Shafranov equation was obtained
using the equilibrium code EFIT with the experimental data at 1025ms, which is just
before the final loss event happens. The equilibrium pressure was set close to zero,
thus the force balance equation can be simplified as J × B ≈ 0. This is to ensure
that the equilibrium current J is almost parallel to B, which is consistent with the
fluid RE model by assuming all equilibrium current is carried by RE (J = JRE). The
obtained new equilibrium is shown in Fig. 4, including the profile of safety factor (q)
and nRE/B. Note that the equilibrium RE current does not have an off-axis peak like
JET equilibrium in [29], and both q and nRE are monotonic function of ψp. The toroidal
field at the magnetic axis is BT = 2T. Plasma density is set at n = 1.5× 1019m−3. Ions
are assumed to be all deuterium given that high-Z impurities are expelled. Because of
the low plasma density, the Alfvén velocity vA ≈ 0.026c which is larger than that in a
normal tokamak discharge. qa of the initial equilibrium was about 2.1.

5.2. Linear simulation of (2,1) resistive kink mode

We first performed linear studies of the kink instability. This is done by running M3D-
C1 in a 2D mesh with a spectral representation in the toroidal direction, assuming
toroidal mode number n = 1. The plasma resistivity is set to be uniform inside the
LCFS. Outside it the resistivity is set to be 103 larger than the inside value in order

Page 12 of 26AUTHOR SUBMITTED MANUSCRIPT - PPCF-103428.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Self-consistent simulation of resistive kink instabilities with runaway electrons 13

1.5 2.0
R (m)

1.0

0.5

0.0

0.5

1.0

Z
 (

m
)

0.00

0.29

0.57

0.86

1.14

1.43

1.72

2.00

2.29

2.57

nRE/B (1016m-3T-1)

q=2
q=1.5

(a)

Figure 3. (a) 2D profile of initial RE density. The red lines show the location of
q = 1.5 and q = 2 flux surfaces. The blue lines shows the location of mesh boundary,
which is also used as wall in the simulation for RE loss counting. (b) Finite element
mesh used in M3D-C1 simulation.
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Figure 4. 1D profiles of q and nRE/B, as functions of square root of normalized
poloidal flux.

in order to suppress current and simulate the vacuum region [30]. The value of cRE/vA
was set to be 8. Note that in a linear simulation, the RE density will be affected by
the perturbations of electromagnetic fields, which can give rise to δnRE, but the RE
characteristic line is calculated only using the equilibrium magnetic fields. Thus there
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Self-consistent simulation of resistive kink instabilities with runaway electrons 14

is no RE loss in linear simulations.
Fig. 5 shows the kink mode growth rates and the real frequencies, for cases of

JRE = 0 and JRE = J. The value of the normalized resistivity η̂ = ηR/ (µ0vAa
2) (R

and a are major and minor radii, µ0 is the vacuum permeability) is varied. Note that
η̂ can be regarded as the inverse of the Lundquist number S. The results show that
both the growth rate and the real frequency follow the 3/5 power law of η̂. Only in the
cases with RE current does the mode have a real frequency, which is consistent with the
theoretical analysis in [15]. The largest resistivity shown in the figure (η̂ = 3 × 10−4)
is close to the resistivity in DIII-D experiment with plasma temperature Te ≈ 2eV. For
this case, the mode growth rate is about 0.053τ−1

A with RE current.

10 6 10 5 10 410 3

10 2

10 1

A

w/o RE

with RE
3/5

(S-1)

(a)

10 6 10 5 10 4
10 3

10 2

10 1

A

with RE
3/5

(S-1)

(b)

Figure 5. Linear simulation results of (a) growth rate γ and (b) real frequency ω of
(2,1) resistive kink mode for different values of resistivity, for cases with JRE = 0 (blue
line) and with JRE = J (red lines).

In addition to resistivity, we also vary the value of qa and study the mode growth
rate and real frequency. In order to change qa, the value of toroidal field in the
equilibrium is scaled while the current density is fixed [31]. In addition to the resistive
kink mode, we also study the stability of the ideal kink mode by setting η̂ inside LCFS
to be zero, while η̂ outside is set to be 1 to simulate the vacuum region [30]. The results
are shown in Fig. 6. It is found that the ideal mode becomes unstable for qa ≤ 2 with the
growth rate increasing significantly as qa drops, which is consistent with the theory [32].
The results of the resistive mode simulations with and without RE follow this trend,
but in those cases the mode is still unstable for qa > 2 due to large plasma resistivity.
The real frequency of the kink mode with RE increases as qa decreases when qa ≥ 2,
which is similar to the growth rate. However, when qa drops below 2, the real frequency
drops significantly while the growth rate increases, as shown in Fig. 6 (b).

Fig. 7 shows the structure of the kink mode, including the perturbed magnetic
poloidal flux (δψ) and the perturbed RE density (δnRE) for cases with η̂ = 3 × 10−4

and JRE = J. It is shown that the mode is dominated by the m = 2 component. The
perturbed RE density is localized near the resonant q = 2 surface. Fig. 8 shows the
radial structure of plasma displacement on the direction normal to flux surfaces (ξn)
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Figure 6. Growth rate γ (a) and real frequency ω (b) of kink mode with different
values of qa, for simulations with no resistivity inside LCFS (black), with a large
resistivity (blue), and with both resistivity and RE current (red). η̂ inside LCFS is set
to be 3 × 10−4 for the resistive simulations. η̂ outside LCFS is set to be 1 for all the
simulations.

decomposed into different poloidal harmonics. The displacement is also localized near
q = 2, which is in agreement with the linear results found with MARS-F [19].
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Figure 7. Structure of perturbed poloidal flux δψp (a) and perturbed RE density
(b) from the linear simulation. The values are normalized according to the maximum
absolution value.

We did a sensitivity study of the effect of the value of cRE/vA on the linear growth
rates and real frequencies. The result is shown in Fig. 9, which indicates that both γ

and ω are not sensitive to this ratio as long as cRE/vA > 4. This is also consistent
with the analytical theory [15]. Similar studies have been conducted regarding mesh
density and value of timesteps of MHD equation and pseudo particle pushing, and good
convergent results are achieved.
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Figure 8. Radial structure of normal plasma displacement of different poloidal
harmonics in the linear simulation.
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Figure 9. Linear simulation results of mode growth rates (blue line) and real
frequencies (red line) using different values of cRE/vA.

5.3. Nonlinear simulation including RE loss

Based on the linear simulation result, we did a nonlinear simulation of resistive kink
instabilities in 3D, with 16 planes in the toroidal direction. Each plane has structure
like in Fig. 3 (b) and are connected by Hermite cubic elements in the toroidal direction.
In the nonlinear simulation the RE characteristic line is calculated following the sum
of equilibrium and perturbed magnetic fields, and the E × B drift is included. When
calculating characteristic lines of RE following Eq. (12), if the line crosses the mesh
boundary, it means that at the position where the pseudo particles originates there is
no new RE from other locations to replenish RE density. Thus the value of nRE at
this original location is set to zero, which indicates RE loss to the wall. This method
is equivalent to using an absorbing boundary condition for nRE when solving Eq. (3)
directly [14].
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In nonlinear simulations we use non-uniform Spitzer resistivity, which is calculated
from the local electron temperature Te,

η = 0.51
4
√
2π

3

e2m
1/2
e ln Λ

(4πε0)2 (kBTe)
3/2

(20)

where we used Zeff = 1. The electron temperature is evolved following Eq. (8) and
Eq. (9), which is controlled by the balance of Ohmic heating and thermal conduction.
In this simulation, large thermal conduction (both κ‖ and κ⊥) is set to represent strong
collisional diffusion in a post-disruption plasma. Before the final loss event, due to the
strong thermal conduction and the absence of Ohmic current, Te will drop very quickly
to the minimum value (set to be 2eV and controlled by the boundary condition of Te),
, which gives a resistivity value η ≈ 300µΩm. After the RE current gets lost in the
resistive kink instability, the Ohmic heating will increase Te thus decreasing η in the
plasma region.

At the beginning of a nonlinear simulation, the (2,1) resistive tearing mode will
experience a linear growing stage, and form magnetic islands near the plasma edge, as
shown in Fig. 10. Since the islands are touching the LCFS, REs initially inside the
islands can get dumped into the open field line region and get lost. The islands will also
rotate in the plasma frame, but this rotation is not significant since the linear growth
only lasts a short time.

Fig. 11 shows the growth and saturation of kinetic and magnetic energy of MHD
modes in a nonlinear simulation. Note that in addition to the dominant n = 1 mode,
higher n mode can also get excited due to nonlinear interaction. The kinetic energy of
all modes and the magnetic energy of n > 1 modes all show bursting behavior, while
the magnetic energy of the n = 1 mode has a slow decay following its initial excitation.
When the mode amplitude passes a certain threshold, the field lines become stochastic
in the outer region first due to island overlapping, as shown in Fig. 10. RE in the
stochastic region get lost very quickly and only RE inside closed flux surface remain.
The stochastic region then grows and further breaks inner flux surfaces. Within 0.06ms,
almost all the RE are lost to the wall, and only the RE residing near the magnetic axis
remain, where there are still closed flux surfaces.

Fig. 12 (a) shows the evolution of the RE current and total current. Note that
although the RE experience significant loss (> 95%) during the excitation of resistive
kink modes, the total current does not change much. This means that the lost runaway
current is replaced by current carried by thermal electrons. This new current has strong
collisional resistivity which is balanced by parallel electric field, as shown in Fig. 12 (b).
In addition, the change of magnetic field topology also leads to a flattening of current
density in the region of stochastic fields, and the total internal inductance decreases,
which further leads to a small current spike of the total current. This current spike was
also seen in JOREK simulation [29] and has been observed in the DIII-D experiment.
The mechanism is similar to the current spike happening during the thermal quench of
tokamak disruptions [33]. The inductive electric field can increase the current density
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Figure 10. Evolution of RE density and Poincaré plots of magnetic field line structure
during the nonlinear simulation, at different time.
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Figure 11. Evolution of kinetic energy (a) and magnetic energy (b) of MHD modes
with different toroidal mode number in the nonlinear simulation.

at the core region, which can be illustrated by the evolution of safety factor at magnetic
axis q0. As q0 drops to 1, a (1,1) kink instability can be excited and cause a flattening
of nRE near the core region.

To better understand RE loss during the instability, we count the total value of
nRE lost at different locations of the boundary. Fig. 13 shows the lost RE deposition
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Figure 12. (a) Time traces of RE and total current when resistive kink mode happens.
(b) Time evolution of q and electric field at magnetic axis.

location on the poloidal plane (represented by white spots) and toroidal angles. In this
discharge, since the RE beam is streaming in the same direction as the magnetic field
and the plasma is only touching the wall on the HFS, most of the lost RE will hit the
lower part of the wall on the HFS after getting transported into the open field field line
region. Since the n = 1 mode dominates during the RE loss, the deposition forms a
single peak, which is similar to the results of RE loss simulation in JET using JOREK
[29]. Note that this analysis is only based on RE density, as in the fluid RE model, no
RE energy information is stored.
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Figure 13. Sum of RE density during kink instability at different location of poloidal
boundary (a) and toroidal angle (b). The white spot in (a) represents the peak RE
loss. The red arrow curve indicated the direction of RE streaming in the simulation.
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We also did some convergence studies regarding parameters used in the nonlinear
simulation, including the number of toroidal planes for the 3D mesh, and the value of
cRE. The results are shown in Fig. 14. We found that by increasing the number of
toroidal planes, the RE loss ratio increases, and there is a significant different between
4 planes and 16 planes. In M3D-C1, cubic Hermite polynomials are used in toroidal
direction to represent quantities between adjacent planes, so 4 planes is usually enough
to accurately represent n = 1 mode. However, this difference in RE loss ratio shows
that higher n modes play an important role in the formation of stochastic fields and
determining RE loss. In the study of varying cRE, it is found that although this change
does not significantly affect the RE loss ratio, it has an impact on the mode saturation
level. As shown in previous studies [11], the existence of RE current plays an important
role in determining the mode saturation amplitude. Thus if RE get lost very quickly
due to the large value of cRE, the mode can saturate in a lower level due to the absence
of RE current in later time. This study confirmed the necessity of using a large value
of cRE for an accurate nonlinear simulation, and thus the importance of applying the
novel numerical method introduced in Secs. 3 and 4.
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Figure 14. Convergence study of RE current loss ratio on different number of toroidal
planes (a), and evolution of magnetic energy of n = 1 mode using different value of
cRE/vA.

5.4. Nonlinear simulation after final loss event

We continued the nonlinear simulation after the initial RE loss. Note that in the
experiment, after significant RE loss, the plasma temperature increases due to the
Ohmic heating of thermal electron current, and neutrals can get ionized which leads to
an increase of plasma density. In our simulation, we have the Ohmic heating term in the
temperature equation, and self-consistent evolution of plasma temperature and Spitzer
resistivity, but the ionization of neutrals is not included. So we artificially increase the
plasma density by a factor of 10 at t =0.3ms, in order to match the increase of plasma
density in the experiment. For RE density we include a source term for secondary
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generation due to knock-on collisions, using Eq. (7) from Ref. [34], since in this case the
electric field is much larger than Connor-Hastie critical field (E/ECH ≈ 300) and there
are no high-Z impurities.

Fig. 15 (a) shows the evolution of RE current and total current in the later
time. The total plasma current, which mainly consist of Ohmic current, decays due
to the resistive diffusion. Ohmic heating causes Te to rise to about 20eV, which gives
a resistivity value η ≈ 15µΩm. The current decay time is about 3 ms, which is
consistent with experimental observation[8]. The RE current grows due to the secondary
generation, but it is still much smaller compared to the total current. Fig. 15 (b) shows
the evolution of magnetic energy of MHD modes. The n = 1 mode will remain at a
certain level after the initial excitation, and keep the magnetic field stochastic in the
outer region. The n = 1 component includes both (2,1) and (1,1) modes, the latter
of which can keep q0 close to 1 during this time, and q and nRE will remain flat near
the core region, as shown in Fig. 16, which is similar to a sawtooth. Since there is no
horizontal control in our simulation, plasma and RE beam will shift toward HFS during
resistive current decay. Eventually the plasma will hit the wall on HFS and all the
remaining RE will get lost.
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Figure 15. (a) Time traces of RE and total current after kink instability and RE loss
event. Dashed line shows the RE current without secondary generation. (b) Evolution
of magnetic energy of MHD modes with different toroidal mode number.

6. Summary

In this paper we introduced new developments of the fluid model of REs in M3D-C1,
which helps to enable us to perform self-consistent simulations of MHD instabilities
with RE current using realistic physical parameters. In order to simulate the continuity
equation of RE density with large convection speed, we applied the method of
characteristics to convert the equation into a form of ODE, and then solve it by
advancing pseudo particles. This method is further optimized using the modified Boris
algorithm to push pseudo particle, which can help reduce the accumulation of numerical
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Figure 16. (a) Profiles of q and nRE/B at t = 1.0ms. (b) RE density and Poincaré
plot of magnetic field line structure

error.
The newly developed code is used to simulate a resistive (2,1) kink instability

happening in a post-disruption RE plateau in the DIII-D experiment. In the
linear simulation, good agreement is obtained between M3D-C1 and MARS-F results,
including the growth rate and mode structure. In the nonlinear simulation, it is found
that the (2,1) mode can grow to significant amplitude within 0.6ms. Together with
other modes, the kink instability can break flux surfaces and make the field lines in
the outer region stochastic, which leads to > 95% of RE getting lost and only RE near
the magnetic axis can remain. The plasma current changes from RE current to Ohmic
current, and then exhibits a slow decay due to resistive diffusion. RE deposition shows
n = 1 toroidal variation and is localized near the HFS. After the initial loss event, the
strong parallel electric field can cause RE density increase through secondary generation,
and keeps the current density at the magnetic axis high and the safety factor q close
to 1. This simulation illustrates the effectiveness of the developed RE model, and new
simulations targeting other machines including JET will be presented in future studies.

It is found from the convergence study of nonlinear simulation that high n modes
play important roles in determining the loss ratio of RE, even though the n = 1 mode
dominates. These high n modes are excited through nonlinear interaction, and can
increase the stochasticity of the magnetic field thus accelerating RE loss. Note that
in M3D-C1 we do not use an ad hoc diffusion model for RE density calculation but a
pure convection model, thanks to the method of characteristics. It is found in the linear
simulation that the mode growth rate does not have a strong dependence on the value of
RE convection speed cRE, which is consistent with the JOREK result [29]. For nonlinear
simulations, the value of cRE can be important in determining the saturation amplitude
of the kink mode, which indicates potential important nonlinear physics associated with
RE convection. The RE loss ratio though is not sensitive to cRE. We thus believe it is
important to use more realistic simulation model for RE in some cases, and it justifies
the necessity of further optimization of the algorithm used in RE fluid model.
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Note that in the current fluid model of RE, the gradient and curvature drifts are not
included in the RE continuity equation. However, it is found that the curvature drift can
be important for high energy RE, and can lead to a shift of RE drift orbit center from
magnetic axis d = qp‖/ (eB) [35]. This shift can lead to a deviation of RE current iso-
surface from magnetic surface, which make it difficult to form an equilibrium satisfying
Grad-Shafranov equation. In DIII-D equilibrium, this shift is relatively small due to
the small RE energy, and can be controlled using external vertical field coils. For JET
and ITER, RE from disruptions can be more energetic due to better confinement, but
the maximum energy is also limited by synchrotron radiation given the larger magnetic
field.

In the simulation model used in the paper, no seed RE generation mechanism
such as Dreicer generation or hot-tail generation is included. This is valid as the
plasma temperature remains below 20eV in the whole post-disruption phase, thus the
seed generation from the Maxwellian tail is ignorable. For future simulation work
targeting thermal and current quench phases at the beginning of the disruption, these
seed generation mechanisms should be included, and additional source terms such as
tritium decay and Compton scattering should also be included if simulating ITER D-T
discharge.

In the experiment, it is observed that MHD mode growth and RE loss can happen
in Alfvén timescales. In the simulation the kink instability grows in resistive timescale,
but here the difference between the two timescales is small as the Lundquist number
in post-disruption plasma is only about 103, which is much smaller compared to that
before disruption. Nevertheless, it is possible that fast magnetic reconnection can play
a role in this process which can flatten the ratio of J/B along the magnetic field line
within Alfvén timescale [33]. One evidence of fast reconnection is that the current spike
observed in our nonlinear simulation is still smaller compared to that in experiment.
Simulating fast reconnection on the Alfvén timescale is still a challenging job for MHD
simulation, and will be explored in the future.
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Appendix A. Derivation of divergence-free form RE convection equation

In the appendix we show how to derive Eq. (11) from Eq. (10).

∂nRE

∂t
= −∇ ·

[
nRE

(
cREb+

E×B

B2

)]
, (A.1)

∇ · [nREcREb] = ∇ ·
[
nREcRE

B

B

]
(A.2)

= cREB · ∇
[nRE

B

]
+
nREcRE

B
∇ ·B (A.3)

= cREB · ∇
[nRE

B

]
, (A.4)

∇ ·
[
nRE

E×B

B2

]
=

E×B

B
· ∇
[nRE

B

]
+
nRE

B
∇ ·
[
E×B

B

]
, (A.5)

∇ ·
[
E×B

B

]
= b · (∇× E)− E · (∇× b) (A.6)

= −∂B
∂t

− E · (∇× b) . (A.7)

Thus
∂

∂t

(nRE

B

)
=

1

B

∂nRE

∂t
− nRE

B2

∂B

∂t
(A.8)

= −
(
cREb+

E×B

B2

)
· ∇
(nRE

B

)
+
nRE

B2
[E · (∇× b)] . (A.9)
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The last term can be written as

E · (∇× b) = E ·
(
∇× B

B

)
(A.10)

=
E · J
B

+ E ·
(
b× ∇B

B

)
(A.11)

Given that E = v × B + η (J− JRE), the first term in Eq. (A.11) represents the
dissipation of |B| due to resistivity of Ohmic current. Since ∇B/B ≈ −1/RR̂, the
second term is proportional to horizontal displacement of plasma, which is also related
to the resistive decay of current.
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